Issue 9, 2007

Renewable plant-based soybean oil methyl esters as alternatives to organic solvents

Abstract

The physico-chemical properties of soybean oil methyl ester (SBME), better known as biodiesel, of importance to its use as a solvent in liquid–liquid separations have been examined. Partition coefficients of several organic species between SBME–water have been determined and compared to log P (1-octanol–water). The free energy of transfer of a methylene group has been obtained and the solvent properties of the SBME–water system determined from distribution data of a small solute set using Abraham's generalized solvation equation. Solute distribution behavior is similar to that found for conventional organic solvent–water systems, but is most similar to other vegetable oils such as olive oil. When ionizable solutes are partitioned in the SBME–water system at differing pH, the neutral species show the highest distribution. Partitioning is dependent on the solute's ability to form hydrogen bonds between water and its charged state. Metal ions (e.g., Fe3+, Co2+, and Ni2+) exhibit moderate partitioning to the SBME phase from water only in the presence of extractants. Actinides (UO22+, Am3+) exhibit significant partitioning to the SBME from aqueous solutions with the use of octyl(phenyl)-N,N-diisobutylcarbamoylmethyl phosphine oxide (CMPO). Soybean oil methyl ester may be a suitable “green” alternative for the replacement of volatile organic solvents in liquid–liquid extractions in selected applications.

Graphical abstract: Renewable plant-based soybean oil methyl esters as alternatives to organic solvents

Article information

Article type
Paper
Submitted
13 Feb 2007
Accepted
03 May 2007
First published
24 May 2007

Green Chem., 2007,9, 1008-1015

Renewable plant-based soybean oil methyl esters as alternatives to organic solvents

S. K. Spear, S. T. Griffin, K. S. Granger, J. G. Huddleston and R. D. Rogers, Green Chem., 2007, 9, 1008 DOI: 10.1039/B702329D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements