Issue 33, 2007

Synthesis and properties of magnesium tetrahydroborate, Mg(BH4)2

Abstract

Mg(BH4)2 is one of the few complex hydrides which have the potential to meet the requirements for hydrogen storage materials, because it contains 14.9 mass% H and has suitable thermodynamic properties. It has not been investigated for hydrogen storage applications yet. In this study, several ways to synthesize solvated and desolvated magnesium tetrahydroborate by wet chemical and mechanochemical methods were tested and compared. A direct synthesis by a reaction of MgH2 with aminoboranes yields magnesium tetrahydroborate quantitatively and in pure form. The method is also applicable to the synthesis of other tetrahydroborates. The products were characterized by elemental analysis, in situ X-ray diffraction (XRD), infrared spectroscopy (FTIR), and thermal analysis methods, such as thermogravimetric analysis (TGA-DSC) and high-pressure calorimetry under a hydrogen atmosphere (HP-DSC).

Graphical abstract: Synthesis and properties of magnesium tetrahydroborate, Mg(BH4)2

Article information

Article type
Paper
Submitted
21 Feb 2007
Accepted
17 May 2007
First published
30 May 2007

J. Mater. Chem., 2007,17, 3496-3503

Synthesis and properties of magnesium tetrahydroborate, Mg(BH4)2

K. Chłopek, C. Frommen, A. Léon, O. Zabara and M. Fichtner, J. Mater. Chem., 2007, 17, 3496 DOI: 10.1039/B702723K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements