Issue 6, 2007

A practical guide to microfluidic perfusion culture of adherent mammalian cells

Abstract

Culturing cells at microscales allows control over microenvironmental cues, such as cell–cell and cell–matrix interactions; the potential to scale experiments; the use of small culture volumes; and the ability to integrate with microsystem technologies for on-chip experimentation. Microfluidic perfusion culture in particular allows controlled delivery and removal of soluble biochemical molecules in the extracellular microenvironment, and controlled application of mechanical forces exerted via fluid flow. There are many challenges to designing and operating a robust microfluidic perfusion culture system for routine culture of adherent mammalian cells. The current literature on microfluidic perfusion culture treats microfluidic design, device fabrication, cell culture, and micro-assays independently. Here we systematically present and discuss important design considerations in the context of the entire microfluidic perfusion culture system. These design considerations include the choice of materials, culture configurations, microfluidic network fabrication and micro-assays. We also present technical issues such as sterilization; seeding cells in both 2D and 3D configurations; and operating the system under optimized mass transport and shear stress conditions, free of air-bubbles. The integrative and systematic treatment of the microfluidic system design and fabrication, cell culture, and micro-assays provides novices with an effective starting point to build and operate a robust microfludic perfusion culture system for various applications.

Graphical abstract: A practical guide to microfluidic perfusion culture of adherent mammalian cells

Supplementary files

Article information

Article type
Tutorial Review
Submitted
28 Mar 2007
Accepted
16 Apr 2007
First published
11 May 2007

Lab Chip, 2007,7, 681-694

A practical guide to microfluidic perfusion culture of adherent mammalian cells

L. Kim, Y. Toh, J. Voldman and H. Yu, Lab Chip, 2007, 7, 681 DOI: 10.1039/B704602B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements