Issue 6, 2007

Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells

Abstract

Directed differentiation of embryonic stem (ES) cells is useful for creating models of human disease and could potentially generate a wide array of functional cell types for therapeutic applications. Methods to differentiate ES cells often involve the formation of cell aggregates called embryoid bodies (EBs), which recapitulate early stages of embryonic development. EBs are typically made from suspension cultures, resulting in heterogeneous structures with a wide range of sizes and shapes, which may influence differentiation. Here, we use microfabricated cell-repellant poly(ethylene glycol) (PEG) wells as templates to initiate the formation of homogenous EBs. ES cell aggregates were formed with controlled sizes and shapes defined by the geometry of the microwells. EBs generated in this manner remained viable and maintained their size and shape within the microwells relative to their suspension counterparts. Intact EBs could be easily retrieved from the microwells with high viability (>95%). These results suggest that the microwell technique could be a useful approach for in vitro studies involving ES cells and, more specifically, for initiating the differentiation of EBs of greater uniformity based on controlled microenvironments.

Graphical abstract: Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells

Article information

Article type
Paper
Submitted
03 Apr 2007
Accepted
03 Apr 2007
First published
02 May 2007

Lab Chip, 2007,7, 786-794

Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells

J. M. Karp , J. Yeh , G. Eng , J. Fukuda, J. Blumling, K. Suh, J. Cheng, A. Mahdavi, J. Borenstein, R. Langer and A. Khademhosseini, Lab Chip, 2007, 7, 786 DOI: 10.1039/B705085M

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements