Issue 39, 2007

Plasma electrochemistry: electroreduction in a flame

Abstract

The manipulation of electron transfer reactions at surfaces forms the cornerstone of electrodeposition and processing of materials on substrates with precise control of stoichiometry and oxidation state. However, the utility of this technique, which is mainly carried out in liquid electrolytes, is ultimately limited by the electrolysis of the solvent which limits a potential window to at best 4.8 V in nonaqueous solutions (A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, NY, 2nd edn, 2001; ref. 1) and can be up to 6 V in ionic liquids (A. P. Abbott, K. J. McKenzie, Phys. Chem. Chem. Phys., 2006, 8, 4265–4279; ref. 2). A long-sought-after goal has been to develop a corresponding technique at the solid/gas interface in the absence of a solvent which will allow in principle a potential window in excess of 100 V (J. M. Goodings, J. Guo, A. N. Hayhurst and S. G. Taylor, Int. J. Mass Spectrom., 2001, 206, 137–151; ref. 3). This extended potential window will enable chemistry at the solid/gas interface that is not possible at the solid/liquid interface. Here we describe a new approach to gas-phase electrochemistry using a flame plasma as the electrolyte medium. We demonstrate the controlled electrochemical reduction of Cu+ to Cu0 at an electrode surface in a flame environment with resulting deposition of either Cu2O or Cu species on conducting diamond electrodes. This approach is novel in that it involves the application of an electrochemical potential difference to change the redox state of surface confined species, not the measurement of flame bore ions (as in flame ionisation detectors). This new technique will permit deposition of films and particles on surfaces with control over the oxidation state of the species. This will provide a valuable enhancement to the capabilities of materials preparation methods such as flame spray deposition.

Graphical abstract: Plasma electrochemistry: electroreduction in a flame

Article information

Article type
Paper
Submitted
02 May 2007
Accepted
13 Jul 2007
First published
30 Jul 2007

Phys. Chem. Chem. Phys., 2007,9, 5335-5339

Plasma electrochemistry: electroreduction in a flame

E. Hadzifejzovic, J. Stankovic, S. Firth, P. F. McMillan and D. J. Caruana, Phys. Chem. Chem. Phys., 2007, 9, 5335 DOI: 10.1039/B706660K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements