Issue 10, 2007

Developing synthetic conical nanopores for biosensing applications

Abstract

In this review we bring together recent results from our group focused towards the development of biosensors from single conically-shaped artificial nanopores. The nanopores, used in the work presented here, were prepared using the track-etch process. The fabrication of track-etched conical nanopores has been optimized to allow for single nanopores with reproducible dimensions to be prepared. We have also demonstrated techniques that allow for easy and controllable manipulation of nanopore geometry (e.g., cone angle). We will consider the ion transport properties of the conical nanopores and factors that affect these properties. Methods for introducing functions that mimic biological ion channels, such as voltage-gating, into these nanopores will also be addressed. Three prototype sensors developed from single conical nanopores will be presented. In the first two sensors, the single conical nanopores function as resistive-pulse sensors and detect the presence of analytes as current-blockade events in the ion current. The third sensor functions in an on/off mode, much like a ligand-gated ion channel. In the presence of a target analyte, the ion current permanently shuts off.

Graphical abstract: Developing synthetic conical nanopores for biosensing applications

Article information

Article type
Review Article
Submitted
08 Jun 2007
Accepted
10 Jul 2007
First published
03 Sep 2007

Mol. BioSyst., 2007,3, 667-685

Developing synthetic conical nanopores for biosensing applications

L. T. Sexton, L. P. Horne and C. R. Martin, Mol. BioSyst., 2007, 3, 667 DOI: 10.1039/B708725J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements