Issue 2, 2008

Direct 1H NMR spectroscopy of dissolved organic matter in natural waters

Abstract

Nuclear magnetic resonance (NMR) spectroscopy arguably provides the greatest insight into the overall chemical composition of dissolved organic matter (DOM). However, in a standard 5 mm NMR probe, a sample of sea water at natural abundance only contains ca. 500–600 ng of organic matter, distributed among the heterogeneous components of DOM. Additionally, the intensity of the water signal, which may be many orders of magnitude greater than the signals from DOM, makes the detection and analysis of DOM at natural abundance extremely demanding. Here, we demonstrate, that although challenging, the application of an improved water suppression technique allows NMR spectra of DOM to be obtained directly (i.e without pre-concentration) for major bodies of water, including rivers, lakes and the ocean. The technique described here provides a compositional overview of an intact sample, permitting researchers to investigate and assess the impact of concentration, isolation and extraction procedures that are employed routinely. Also the technique permits NMR to be performed on ‘precious’ samples for which traditional isolations are not possible, for example, water from ice cores and pore water, which are key in hydrology and for paleoclimatic reconstruction.

Graphical abstract: Direct 1H NMR spectroscopy of dissolved organic matter in natural waters

Supplementary files

Article information

Article type
Paper
Submitted
03 Sep 2007
Accepted
26 Nov 2007
First published
17 Dec 2007

Analyst, 2008,133, 263-269

Direct 1H NMR spectroscopy of dissolved organic matter in natural waters

B. Lam and A. J. Simpson, Analyst, 2008, 133, 263 DOI: 10.1039/B713457F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements