Issue 5, 2008

pH-Responsive branched polymernanoparticles

Abstract

We describe a new one-pot, single-step route for the preparation of pH-responsive branched polymernanoparticles. These polymers, which are based on the pH-responsive monomer 2-(diethylamino)ethyl methacrylate (DEA) and hydrophilic macromonomer poly(ethyleneglycol) methacrylate (PEGMA), are synthesised using a modified conventional free-radical polymerisation. Consequently, their preparation is generic, scaleable and tolerant of functionality. In aqueous solution the branched copolymers form core–shell structures at basic pH and on reducing the solution pH they become hydrated and swell, displaying similar characteristics to those of pH-responsive shell cross-linked micelles and microgels. We demonstrate good control over the hydrodynamic particle size, polymer chain-end, and the uptake and release of a model hydrophobe and also the ability to tune the apparent pKa of the DEA residues by varying the degree of branching. These results augur well for commercially viable tunable release applications.

Graphical abstract: pH-Responsive branched polymer nanoparticles

Article information

Article type
Paper
Submitted
23 Nov 2007
Accepted
25 Feb 2008
First published
11 Mar 2008

Soft Matter, 2008,4, 985-992

pH-Responsive branched polymer nanoparticles

J. V. M. Weaver, R. T. Williams, B. J. L. Royles, P. H. Findlay, A. I. Cooper and S. P. Rannard, Soft Matter, 2008, 4, 985 DOI: 10.1039/B718118C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements