Issue 10, 2008

Automotive catalysis studied by surface science

Abstract

In this tutorial review I discuss the significant impact that surface science has had on our understanding of the catalytic phenomena associated with automobile exhaust depollution catalysis. For oxidation reactions it has generally been found that reactions are self-poisoned at low temperatures by the presence of strongly adsorbed reactants (such as molecular CO and NO), and that the rapid acceleration in rate at elevated temperatures (often called ‘light-off’) is due to the desorption of such adsorbates, which then frees up sites for dissociation and hence for oxidation reactions. In some circumstances such autocatalytic phenomena can then manifest themselves as oscillatory reactions which can vary in rate in both space and time. For NO reduction, the efficiency of depollution (by production of molecular nitrogen) is strongly affected by the nature of the metal used. Rh is extremely effective because it can dissociate NO much more readily than metals such as Pd and Pt, enabling oxygen removal (by reaction with CO to CO2) even at room temperature. Rh is also very selective in producing predominantly N2, rather than N2O. NOx storage and reduction (NSR) is an important recent development for removal of NOx under the highly oxidising conditions of a lean-burn engine exhaust, and the strategy involves storing NOx on BaO under oxidising conditions followed by the creation of reducing conditions to de-store and reduce it to nitrogen. By the use of STM it has been shown that this storage process is extremely facile, occurring fast even under UHV conditions, and that the storage occurs on BaO in the vicinity of Pt, with most of the oxide being converted to nitrate.

Graphical abstract: Automotive catalysis studied by surface science

Article information

Article type
Tutorial Review
Submitted
24 Apr 2008
First published
05 Aug 2008

Chem. Soc. Rev., 2008,37, 2204-2211

Automotive catalysis studied by surface science

M. Bowker, Chem. Soc. Rev., 2008, 37, 2204 DOI: 10.1039/B719206C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements