Volume 140, 2009

Nanoparticlecatalysts with high energy surfaces and enhanced activity synthesized by electrochemical method

Abstract

Electrochemical shape-controlled synthesis of metal nanocrystal (NC) catalysts bounded by high-index facets with high surface energy was achieved by developing a square-wave potential route. Tetrahexahedral Pt NCs with 24 {hk0} facets, concave hexoctahedral Pt NCs with 48 {hkl} facets, and multiple twinned Pt nanorods with {hk0} facets were produced. The method was employed also to synthesize successfully trapezohedral Pd NCs with 24 {hkk} facets, and concave hexoctahedral Pd NCs with 48 {hkl} facets. It has been tested that, thanks to the high-index facets with high density of atomic steps and dangling bonds, the tetrahexahedral Pt NCs exhibit much enhanced catalytic activity for equivalent Pt surface areas for electrooxidation of small organic fuels such as ethanol. These results demonstrate that the developed square-wave potential method has surmounted the limit of conventional chemical methods that could synthesize merely metal nanocrystals with low surface energy, and opened a new prospect avenue in shape-controlled synthesis of nanoparticle catalysts with high surface energy and enhanced activity.

Article information

Article type
Paper
Submitted
04 Mar 2008
Accepted
09 May 2008
First published
14 Aug 2008

Faraday Discuss., 2009,140, 81-92

Nanoparticle catalysts with high energy surfaces and enhanced activity synthesized by electrochemical method

Z. Zhou, N. Tian, Z. Huang, D. Chen and S. Sun, Faraday Discuss., 2009, 140, 81 DOI: 10.1039/B803716G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements