Issue 12, 2008

Supramolecular gelling agents: can they be designed?

Abstract

The last two decades have witnessed an upsurge of research activities in the area of supramolecular gelators, especially low molecular mass organic gelators (LMOGs), not only for academic interests but also for their potential applications in materials science. However, most of the gelators are serendipitously obtained; their rational design and synthesis is still a major challenge. Wide structural diversities of the molecules known to act as LMOGs and a dearth of molecular level understanding of gelation mechanisms make it difficult to pin-point a particular strategy to achieve rational design of gelators. Nevertheless, some efforts are being made to achieve this goal. Once a gelling agent is serendipitously obtained, new gelling agents with novel properties may be prepared by modifying the parent gelator molecule following a molecular engineering rationale; however, such approach is limited to the same class of gelling agent generated from the parent gelating scaffold. A crystal engineering approach wherein the single-crystal structure of a molecule is correlated with its gelling/nongelling behaviour (structure–property correlation) allows molecular level understandings of the self-assembly of the gelator and nongelator molecules and therefore, provides new insights into the design aspects of supramolecular gelling agents. This tutorial review aims at highlighting some of the developments covering both molecular and crystal engineering approaches in designing LMOGs.

Graphical abstract: Supramolecular gelling agents: can they be designed?

Article information

Article type
Tutorial Review
Submitted
21 Aug 2008
First published
17 Oct 2008

Chem. Soc. Rev., 2008,37, 2699-2715

Supramolecular gelling agents: can they be designed?

P. Dastidar, Chem. Soc. Rev., 2008, 37, 2699 DOI: 10.1039/B807346E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements