Issue 3, 2009

Improved isotopic SIMS measurements of uranium particles for nuclear safeguard purposes

Abstract

The isotopic analysis of particles containing sub-pg to pg levels of uranium, released from nuclear material handling, has been proven as an efficient tool for international safeguard purposes. Precise and accurate measurement of both enrichment and the minor isotopes is, however, a challenging analytical task due to the low levels of material. One of the mainstay techniques for particle measurement is Secondary Ion Mass Spectrometry (SIMS), this study evaluates the analytical benefit of an alternative in the form of large geometry SIMS (LG-SIMS), which combines high transmission with high mass resolution. We report here that LG-SIMS instruments provide a significantly better measurement quality than the small geometry SIMS as almost all isobaric background interferences are removed at a high useful ion yield. Useful yield measurements, performed on uranium oxide particles with calibrated uranium content, showed an overall useful yield of 1.2% for the LG-SIMS at a mass resolution of 3000. These improvements were then demonstrated by comparing results from actual nuclear inspection samples measured on both instruments. Additional benefits include an increased ability to detect particles of interest in a dust matrix while simultaneously reducing the time of sample analysis. An evaluation on the performance of LG-SIMS compared to Thermal Ion Mass Spectrometry (TIMS) is also presented. This evaluation shows that LG-SIMS has an advantage due to its high ion yield but with a limitation in the detection limit of 236U at higher enrichments due to the necessity for a hydrogen correction.

Graphical abstract: Improved isotopic SIMS measurements of uranium particles for nuclear safeguard purposes

Article information

Article type
Paper
Submitted
20 Jun 2008
Accepted
27 Nov 2008
First published
07 Jan 2009

J. Anal. At. Spectrom., 2009,24, 277-287

Improved isotopic SIMS measurements of uranium particles for nuclear safeguard purposes

Y. Ranebo, P. M. L. Hedberg, M. J. Whitehouse, K. Ingeneri and S. Littmann, J. Anal. At. Spectrom., 2009, 24, 277 DOI: 10.1039/B810474C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements