Issue 18, 2009

Studying the microscopic nature of diffusion with helium-3 spin-echo

Abstract

Helium-3 spin-echo (3HeSE) is a powerful, new experimental technique for studying dynamical phenomena at surfaces with ultra-high energy resolution. Resolution is achieved by using the 3He nuclear spin as an internal timer, to enable measurement of the energy changes of individual atoms as they scatter. The technique yields a measurement of surface correlation in reciprocal space and real time, and probes the nanometre length scales and picosecond to nanosecond timescales that are characteristic of many important atomistic processes. In this article we provide an introductory description of the 3HeSE technique for quasi-elastic scattering measurements and explain how it can be used to obtain unique insights into the motion of adsorbates. We illustrate the technique by reviewing recent measurements, starting with simple hopping and then showing how correlations, arising from adsorbate interactions, can be observed. The final measurements demonstrate how the absence of such correlations, when expected, are used to question the conventional description that attributes the coverage dependence of surface processes entirely to pairwise forces between adsorbates. The emphasis throughout is on the characteristic signatures of adsorbate motion that can be seen in the data, without recourse to a detailed theoretical analysis. Numerical simulations using the Langevin equation are used to illustrate generic behaviour and to provide a quantitative analysis of the experiment.

Graphical abstract: Studying the microscopic nature of diffusion with helium-3 spin-echo

Article information

Article type
Perspective
Submitted
24 Jun 2008
Accepted
05 Feb 2009
First published
12 Mar 2009

Phys. Chem. Chem. Phys., 2009,11, 3355-3374

Studying the microscopic nature of diffusion with helium-3 spin-echo

A. P. Jardine, G. Alexandrowicz, H. Hedgeland, W. Allison and J. Ellis, Phys. Chem. Chem. Phys., 2009, 11, 3355 DOI: 10.1039/B810769F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements