Issue 12, 2008

Origin of stabilisation of aqueous foams in nanoparticle–surfactant mixtures

Abstract

Using a range of complementary experiments, a detailed investigation into the behaviour of air-in-water foams stabilised by a mixture of silica nanoparticles and pure cationic surfactant has been made. At high pH where particles are significantly negatively charged and surfactant is positively charged, no foam is possible with particles alone whereas surfactant-stabilised foams break down completely within one day at all concentrations. In particle–surfactant mixtures, a synergism occurs with respect to foam formation and stability due to the adsorption of surfactant molecules onto particle surfaces. The foamability of mixed dispersions is substantially reduced compared with surfactant solutions alone. However, the foam stability passes through a maximum with respect to surfactant concentration and these foams are remarkably stable. Based on our findings from dispersion stability measurements, particle ζ potentials, the adsorption isotherm of surfactant on particles and relevant contact angles of water in air on silica surfaces, we conclude that foams are most stable when particles are strongly flocculated corresponding to them possessing a low charge, being maximally hydrophobic and containing an adsorbed monolayer of surfactant. Cryo-scanning electron microscopy (cryo-SEM) analysis of the same foams leads us to propose that foam stabilisation changes from being surfactant dominated at low surfactant concentration to being particle dominated at intermediate concentrations and reverting to surfactant dominated at higher concentrations.

Graphical abstract: Origin of stabilisation of aqueous foams in nanoparticle–surfactant mixtures

Article information

Article type
Paper
Submitted
03 Jul 2008
Accepted
15 Aug 2008
First published
25 Sep 2008

Soft Matter, 2008,4, 2373-2382

Origin of stabilisation of aqueous foams in nanoparticlesurfactant mixtures

B. P. Binks, M. Kirkland and J. A. Rodrigues, Soft Matter, 2008, 4, 2373 DOI: 10.1039/B811291F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements