Issue 3, 2009

Selective protein and DNA adsorption on PLL-PEG films modulated by ionic strength

Abstract

We describe a soft thin film which selectively adsorbs DNA but averts the non-specific binding of proteins. Indium tin oxide (ITO) substrates were surface-modified with a poly(L-lysine)-g-poly(ethylene glycol) (PLL-PEG) film which carries an outer protein-repelling PEG layer and an underlying positively charged PLL layer that attracts DNA. Binding of DNA could be tuned by a factor of over 90 by varying the salt concentration. The dependence of DNA binding on ionic strength was described with a physicochemical model which led to the conclusion of an unexpectedly high enrichment of salt inside the PEG layer. In addition, the model led to an expanded definition of the Debye–Hückel type effective screening length parameter z. Our new findings on a film with dual passivation/attraction properties can find applications in biopolymer-specific coatings useful in bioseparation and biosensing. In addition, the physicochemical characterisation provides new insight into the interactions between biopolymers and polymer-coated interfaces.

Graphical abstract: Selective protein and DNA adsorption on PLL-PEG films modulated by ionic strength

Article information

Article type
Paper
Submitted
29 Aug 2008
Accepted
15 Oct 2008
First published
25 Nov 2008

Soft Matter, 2009,5, 613-621

Selective protein and DNA adsorption on PLL-PEG films modulated by ionic strength

R. Schlapak, D. Armitage, N. Saucedo-Zeni, W. Chrzanowski, M. Hohage, D. Caruana and S. Howorka, Soft Matter, 2009, 5, 613 DOI: 10.1039/B815065F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements