Issue 9, 2009

Adsorption and desorption of hydrogen on metal–organic framework materials for storage applications: comparison with other nanoporous materials

Abstract

Hydrogen adsorption on porous materials is one of the possible methods proposed for hydrogen storage for transport applications. High pressure experimental studies of a wide range of porous materials have obtained maximum hydrogen excess capacities of 6–8 wt% at 77 K for metal–organic frameworks (MOFs) and porous carbon materials. Grand canonical Monte Carlo (GCMC) simulation studies indicate that higher hydrogen capacities are possible for covalent organic frameworks (COFs). Currently, the maximum isosteric enthalpies of adsorption of ∼13 kJ mol−1 at 77 K have been observed experimentally for metal–organic framework materials and this is higher than for COFs, where the maximum predicted from GCMC simulations is ∼8 kJ mol−1. Metal–organic framework materials have structural diversity and scope for modification of surface chemistry to enhance hydrogen surface interactions. The synthesis of MOFs with stronger H2–surface interactions to give similar hydrogen capacities at much higher temperatures than 77 K is required and eventually, materials that have these high capacities at ambient temperatures with rapid adsorption/desorption characteristics are necessary for applications as hydrogen storage materials for transport applications. The current methods envisaged for increasing adsorption at higher temperatures involve modification of the surface chemistry, in particular, the inclusion of open metal centres to increase hydrogen surface site interactions, and utilisation of the framework flexibility are discussed.

Graphical abstract: Adsorption and desorption of hydrogen on metal–organic framework materials for storage applications: comparison with other nanoporous materials

Article information

Article type
Perspective
Submitted
08 Sep 2008
Accepted
15 Oct 2008
First published
16 Jan 2009

Dalton Trans., 2009, 1487-1505

Adsorption and desorption of hydrogen on metal–organic framework materials for storage applications: comparison with other nanoporous materials

K. M. Thomas, Dalton Trans., 2009, 1487 DOI: 10.1039/B815583F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements