Issue 8, 2009

Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers

Abstract

We report on the fast and optically controlled angular bending of cantilevers made from liquid crystal polymer networks functionalized with azobenzene moieties (azo-LCN). For potential applications such as adaptive optics, photoresponsive cantilevers should rapidly deform to controlled angles while maintaining a modulus that can accomplish appreciable mechanical work. This work demonstrates cantilevers made of monodomain azo-LCN containing pendant (side chain) azobenzene mesogens with a storage modulus of 1.4 GPa bend 85° in less than 300 ms upon exposure to 442 nm irradiation. Moreover, the bending angle of these monodomain azo-LCN cantilevers can be controlled by the polarization angle of the source relative to the long-axis of the cantilever. The bending performance (deformation angle and speed) of this monodomain system is compared to a polydomain analogue. The impact of azobenzene concentration, laser intensity, and thickness on these parameters is also presented.

Graphical abstract: Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers

Additions and corrections

Article information

Article type
Paper
Submitted
20 Oct 2008
Accepted
14 Nov 2008
First published
15 Dec 2008

J. Mater. Chem., 2009,19, 1080-1085

Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers

T. J. White, S. V. Serak, N. V. Tabiryan, R. A. Vaia and T. J. Bunning, J. Mater. Chem., 2009, 19, 1080 DOI: 10.1039/B818457G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements