Issue 11, 2009

Tetrazolyl and tetrazolylidene complexes of gold: a synthetic and structural study

Abstract

Lithiation of 1-benzyl-1H-tetrazole followed by transmetallation with [AuCl(PPh3)], [Au(C6F5)(tht)] or [AuCl(tht)] (tht = tetrahydrothiophene) and subsequent alkylation afforded cationic 1-benzyl-4-methyl-4,5-dihydro-1H-1,2,3,4-tetrazol-5-ylidene(triphenylphosphine)gold(I), 1, neutral 1-benzyl-4-methyl-4,5-dihydro-1H-1,2,3,4-tetrazol-5-ylidene(pentafluorophenyl)gold(I), 2, and a cationic biscarbene complex, bis(1-benzyl-4-methyl-4,5-dihydro-1H-1,2,3,4-tetrazol-5-ylidene)gold(I), 3. The first complex underwent a homoleptic rearrangement in solution to form 3. Reaction of [Au(N3)PPh3] with the three isocyanides (CH3)2C6H3NC, tBuNC and CyNC, respectively, yielded the corresponding neutral tetrazolyl(phosphine) complexes of gold, [1-(2,6-dimethylphenyl)-1H-tetrazol-5-yl](triphenylphosphine)gold(I), 4, [1-(tert-butyl)-1H-tetrazol-5-yl](triphenylphosphine)gold(I), 6, and [1-(cyclohexyl)-1H-tetrazol-5-yl](triphenylphosphine)gold(I), 7. Alkylation of 4 with methyl triflate on N4 allowed isolation of the crystalline carbene complex 1-(2,6-dimethylphenyl)-4-methyl-4,5-dihydro-1H-1,2,3,4-tetrazol-5-ylidene)(triphenylphosphine)gold(I), 5. Complex 7 was not isolable in pure form but converts by isocyanide substitution of triphenylphosphine into [1-cyclohexylisocyanide][1-(cyclohexyl)-1H-tetrazol-5-yl]gold(I), 8. From a product mixture of 7 and 8 the transformed molecules [(cyclohexylamino)(ethoxy)carbene](1-cyclohexyl-1H-tetrazol-5-yl)gold(I), 9, and [bis(cyclohexylamino)carbene](1-cyclohexyltetrazol-5-yl)gold(I), 10, co-crystallised spontaneously after a long time at −20 °C.

Graphical abstract: Tetrazolyl and tetrazolylidene complexes of gold: a synthetic and structural study

Supplementary files

Article information

Article type
Paper
Submitted
07 Apr 2009
Accepted
03 Jun 2009
First published
07 Jul 2009

New J. Chem., 2009,33, 2208-2218

Tetrazolyl and tetrazolylidene complexes of gold: a synthetic and structural study

W. F. Gabrielli, S. D. Nogai, J. M. McKenzie, S. Cronje and H. G. Raubenheimer, New J. Chem., 2009, 33, 2208 DOI: 10.1039/B907022B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements