Issue 14, 2009

Liquid crystallography: 3D microdroplet arrangements using microfluidics

Abstract

Monodisperse liquid particles (femtolitre oil droplets) are shown to self-organize into three-dimensional (3D) close-packed face-centered cubic (fcc) arrangements. Droplets were formed at a nanochannel–microchannel interface, and the formation of these arrangements occurred at certain flow-rate ratios of oil and water. The remarkably robust and stable structures formed in two different ‘crystallographic’ orientations of a face-centered cubic lattice, fcc(100) and fcc(111), as evidenced by the occurrence of square and hexagonal patterns at the plane adjacent to the channel wall. The orientation was found to depend on the oil-to-water flow-rate ratio. Similar to solid state crystals, ‘crystallographic’ features were observed, such as dislocation lines and defects. The 3D arrays presented in this work could provide platforms for a number of applications.

Graphical abstract: Liquid crystallography: 3D microdroplet arrangements using microfluidics

Supplementary files

Article information

Article type
Communication
Submitted
28 Apr 2009
Accepted
22 May 2009
First published
09 Jun 2009

Soft Matter, 2009,5, 2708-2712

Liquid crystallography: 3D microdroplet arrangements using microfluidics

L. Shui, E. Stefan Kooij, D. Wijnperlé, A. van den Berg and J. C. T. Eijkel, Soft Matter, 2009, 5, 2708 DOI: 10.1039/B908498C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements