Issue 1, 2010

Hydrogenation of nitrile in supercritical carbon dioxide: a tunable approach to amine selectivity

Abstract

The use of supercritical carbon dioxide (scCO2) on the hydrogenation of benzonitrile was investigated over Pd and other metal catalysts. Without any additive, benzonitrile was hydrogenated to benzylamine with high conversion (90.2%) and selectivity (90.9%) using the Pd/MCM-41 catalyst. A strong influence of CO2 pressure on the conversion and selectivity were observed. As the CO2 pressure increases, the conversion was increased, and after reaching the maximum at around 8–10 MPa, it decreased. Moreover, simply by tuning the CO2 pressure, it is possible to obtain benzylamine or dibenzylamine. For instance, at lower pressure CO2 acts as a protecting agent, leading to the formation of the primary amine, but at higher pressure, the yield of primary amine as well as the solubility of the imine intermediate in CO2 increases, which results high selectivity for dibenzylamine. A plausible mechanism has been proposed to show the role of CO2 on the selectivity toward primary and secondary amines. The results confirm that the presence of CO2 is mandatory for the formation of benzylamine with high selectivity. Furthermore, the other reaction parameters, such as reaction time, H2 pressure, temperature etc., also affect the conversion as well as selectivity of benzylamine. This process has been extended to the hydrogenation of a series of different nitrile compounds.

Graphical abstract: Hydrogenation of nitrile in supercritical carbon dioxide: a tunable approach to amine selectivity

Article information

Article type
Paper
Submitted
10 Jul 2009
Accepted
15 Sep 2009
First published
23 Oct 2009

Green Chem., 2010,12, 87-93

Hydrogenation of nitrile in supercritical carbon dioxide: a tunable approach to amine selectivity

M. Chatterjee, H. Kawanami, M. Sato, T. Ishizaka, T. Yokoyama and T. Suzuki, Green Chem., 2010, 12, 87 DOI: 10.1039/B913828E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements