Issue 1, 2010

Sustainability of supply or the planet: a review of potential drop-in alternative aviation fuels

Abstract

The development of kerosene-like drop-in alternative aircraft fuels can be categorised into two groups, depending on whether the product increases supply security or provides a reduced environmental footprint. This paper uncovers this relationship through a review of commercially available process technologies (Fischer Tropsch and hydroprocessing) to produce alternative fuels, lifecycle results and recent flight test campaigns, before evaluating the prospects for future fuel development. Supply may be improved through the conversion of coal (with carbon sequestration) or natural gas using the Fischer Tropsch process. Refinement of these alternative fossil fuels, however, provides comparable total life cycle emissions to Jet A-1. The hydroprocessing of biomass feedstock provides for a reduced environmental footprint—approximately 30% reduction for sustainable cultivated feedstock, when blended 50/50 with conventional jet fuel. However, securing supply is a significant issue. Considering aviation is responsible for 2.6% of global CO2 emissions, converting 6% of arable land (representing 0.95% of the earth surface) to supply a 50/50 blend, thus offsetting 0.78% of global CO2 emissions, seems impractical based upon the current land use scenario. Furthermore, ground based sectors have significant environmental footprints compared to aviation, yet require little pre-processing of feedstock (i.e. power generation can burn raw feedstock), thus presenting a better biomass opportunity cost.

Graphical abstract: Sustainability of supply or the planet: a review of potential drop-in alternative aviation fuels

Article information

Article type
Analysis
Submitted
03 Sep 2009
Accepted
18 Nov 2009
First published
07 Dec 2009

Energy Environ. Sci., 2010,3, 17-27

Sustainability of supply or the planet: a review of potential drop-in alternative aviation fuels

L. Rye, S. Blakey and C. W. Wilson, Energy Environ. Sci., 2010, 3, 17 DOI: 10.1039/B918197K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements