Issue 3, 2010

Efficient bulk heterojunction devices based on phenylenevinylene small molecule and perylene–pyrene bisimide

Abstract

We report the fabrication and characterization of photovoltaic devices using a bulk heterojunction (BHJ) photoactive layer consisting of a small molecule (T), which contains a central p-phenylenevinylene unit, intermediate thiophene moieties, and terminal cyano-vinylene 4-nitrophenyls as the donor and a perylenepyrene bisimide (PPI) as the acceptor. The difference in the LUMO levels (0.5 eV) of these materials is sufficient for the photoinduced charge transfer in the bulk heterojunction active layer. The optimum blend ratio (by weight) between T and PPI is 1 : 3.5 with a power conversion efficiency (PCE) of about 1.87%, beyond that the PCE starts to decrease. The incorporation of a thin ZnO layer between the organic BHJ layer and the top Al electrode increases the PCE to 2.46%, which is attributed to the enhanced light absorption due to the optical interference between incident light and reflected light from the Al electrode. It is also attributed to the improved electron transport in the device, since the conduction band of ZnO closely matches the work function of the Al electrode. The PCE is further increased to 3.17% when the device with the ZnO layer is annealed at a temperature of 100 °C for 5 min. This PCE is among the highest values reported to date for solar cells using solution processable small molecules.

Graphical abstract: Efficient bulk heterojunction devices based on phenylenevinylene small molecule and perylene–pyrene bisimide

Article information

Article type
Paper
Submitted
08 Sep 2009
Accepted
07 Oct 2009
First published
16 Nov 2009

J. Mater. Chem., 2010,20, 561-567

Efficient bulk heterojunction devices based on phenylenevinylene small molecule and perylenepyrene bisimide

G. D. Sharma, P. Suresh, J. A. Mikroyannidis and M. M. Stylianakis, J. Mater. Chem., 2010, 20, 561 DOI: 10.1039/B918527E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements