Issue 6, 2010

Biofunctional colloids and their assemblies

Abstract

Colloidal particles are used as elemental building blocks to construct biofunctional nanostructures. In particular, multidimensional periodic arrangements of colloidal particles such as planar arrays and spherical assemblies can be used in a wide range of biological fields. The spatial regularity of such structures at the submicron-scale gives rise to special features such as a photonic bandgap (PBG) and selective permeability, which cannot be achieved by single colloidal particles. Recent advances in microfluidics technologies enable the fabrication of designed microparticles of equal size and shape in a continuous manner. Such microparticles have great potential for use in high-throughput screening and immunoassays. In this article, we review the current state-of-the-art in regard to colloidal assemblies and microparticles prepared by microfluidics for biological applications. This review consists of five main sections: (1) surface modification methods, (2) two dimensional (2D) and (3) three dimensional (3D) colloidal assemblies, (4) confined regular structures, and (5) novel fabrication strategies for advanced colloidal assemblies. In each section, we discuss not only the fabrication routes for biofunctional materials but also the characteristics of the materials and their biological applications. Finally, we outline the future perspectives for biofunctional colloidal materials.

Graphical abstract: Biofunctional colloids and their assemblies

Article information

Article type
Review Article
Submitted
05 Oct 2009
Accepted
16 Dec 2009
First published
28 Jan 2010

Soft Matter, 2010,6, 1092-1110

Biofunctional colloids and their assemblies

S. Kim, J. Lim, S. Lee, C. Heo and S. Yang, Soft Matter, 2010, 6, 1092 DOI: 10.1039/B920611F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements