Issue 6, 2010

Zeolite-catalysed conversion of C3sugars to alkyl lactates

Abstract

The direct conversion of C3 sugars (or trioses) to alkyl lactates was achieved using zeolite catalysts. This reaction represents a key step towards the efficient conversion of bio-glycerol or formaldehyde to added-value chemicals such as lactate derivatives. The highest yields and selectivities towards the desired lactate product were obtained with Ultrastable zeolite Y materials having a low Si/Al ratio and a high content of extra-framework aluminium. Correlating the types and amounts of acid sites present in the different zeolites reveals that two acid functions are required to achieve excellent catalysis. Brønsted acid sites catalyse the conversion of trioses to the reaction intermediate pyruvic aldehyde, while Lewis acid sites further assist in the intramolecular rearrangement of the aldehyde into the desired lactate ester product. The presence of strong zeolitic Brønsted acid sites should be avoided as much as possible, since they convert the intermediate pyruvic aldehyde into alkyl acetals instead of lactate esters. A tentative mechanism for the acid catalysis is proposed based on reference reactions and isotopically labelled experiments. Reusability of the USY catalyst is demonstrated for the title reaction.

Graphical abstract: Zeolite-catalysed conversion of C3 sugars to alkyl lactates

Article information

Article type
Paper
Submitted
13 Oct 2009
Accepted
22 Mar 2010
First published
05 May 2010

Green Chem., 2010,12, 1083-1089

Zeolite-catalysed conversion of C3 sugars to alkyl lactates

P. P. Pescarmona, K. P. F. Janssen, C. Delaet, C. Stroobants, K. Houthoofd, A. Philippaerts, C. De Jonghe, J. S. Paul, P. A. Jacobs and B. F. Sels, Green Chem., 2010, 12, 1083 DOI: 10.1039/B921284A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements