Issue 9, 2010

Invader LNA: Efficient targeting of short double stranded DNA

Abstract

Despite progress with triplex-forming oligonucleotides or helix-invading peptide nucleic acids (PNAs), there remains a need for probes facilitating sequence-unrestricted targeting of double stranded DNA (dsDNA) at physiologically relevant conditions. Invader LNA probes, i.e., DNA duplexes with “+1 interstrand zipper arrangements” of intercalator-functionalized 2′-amino-α-L-LNA monomers, are demonstrated herein to recognize short mixed sequence dsDNA targets. This approach, like pseudo-complementary PNA (pcPNA), relies on relative differences in stability between probe duplexes and the corresponding probe:target duplexes for generation of a favourable thermodynamic gradient. Unlike pcPNA, Invader LNA probes take advantage of the “nearest neighbour exclusion principle”, i.e., intercalating units of Invader LNA monomers are poorly accommodated in probe duplexes but extraordinarily well tolerated in probe-target duplexes (ΔTm/modification up to +11.5 °C). Recognition of isosequential dsDNA-targets occurs: a) at experimental temperatures much lower than the thermal denaturation temperatures (Tm's) of Invader LNAs or dsDNA-targets, b) at a wide range of ionic strengths, and c) with good mismatch discrimination. Recognition of dsDNA is monitored in real-time using inherent pyrene–pyrene excimer signals of Invader LNA probes, which provides insights into reaction kinetics and enables rational design of probes. These properties render Invader LNAs as promising probes for biomedical applications entailing sequence-unrestricted recognition of dsDNA.

Graphical abstract: Invader LNA: Efficient targeting of short double stranded DNA

Supplementary files

Article information

Article type
Paper
Submitted
10 Nov 2009
Accepted
20 Jan 2010
First published
04 Mar 2010

Org. Biomol. Chem., 2010,8, 2028-2036

Invader LNA: Efficient targeting of short double stranded DNA

S. P. Sau, T. S. Kumar and P. J. Hrdlicka, Org. Biomol. Chem., 2010, 8, 2028 DOI: 10.1039/B923465A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements