Issue 5, 2010

Conformational degeneracy restricts the effective information content of heparan sulfate

Abstract

The linear, sulfated polysaccharide heparan sulfate occupies a pivotal position in intercellular signalling events, interacting with numerous proteins on the cell surface and in the extracellular matrix. Its complex sequences suggest high potential information content but, despite extensive efforts, a clear relationship between its substitution pattern and biological activity remains elusive. This results from technical limitations, compounded by attempts to correlate substitution pattern directly with activity without considering other conformational factors. For a series of systematically modified analogues of heparan sulfate, the relationship between substitution pattern and experimental 13C NMR chemical shifts, which act as reporters of the presence of conformational change, particularly around the glycosidic linkages, was explored through chemometric analysis. From analysis of the experimental data it was evident that wide linkage variation arose from O-sulfation in iduronate and N-sulfation in glucosamine residues but, their effects were distinct, while 6-O-sulfation had much less impact. Models of saccharide sequences showed that the maximum spread of variation in glycosidic linkages occurred before maximum sequence diversity and revealed a highly degenerate system: a fraction of possible sequences is sufficient to provide diverse backbone conformations to satisfy particular protein binding requirements. The unique information content potentially available in HS sequences, defined ultimately by conformation, is vastly inferior to the potential sequence diversity.

Graphical abstract: Conformational degeneracy restricts the effective information content of heparan sulfate

Supplementary files

Article information

Article type
Paper
Submitted
10 Nov 2009
Accepted
18 Jan 2010
First published
15 Feb 2010

Mol. BioSyst., 2010,6, 902-908

Conformational degeneracy restricts the effective information content of heparan sulfate

T. R. Rudd and E. A. Yates, Mol. BioSyst., 2010, 6, 902 DOI: 10.1039/B923519A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements