Issue 13, 2010

The force network ensemble for granular packings

Abstract

For packings of hard but not perfectly rigid particles, the length scales that govern the packing geometry and the contact forces are well separated. This separation of length scales is explored in the force network ensemble, where one studies the space of allowed force configurations for a given, frozen contact geometry. Here we review results of this approach, which yields nontrivial predictions for the effect of packing dimension and anisotropy on the contact force distribution P(f), the response to overall shear and point forcing, all of which can be studied in great numerical detail. Moreover, there are emerging analytical approaches that very effectively capture, for example, the form of force distributions.

Graphical abstract: The force network ensemble for granular packings

Article information

Article type
Review Article
Submitted
17 Dec 2009
Accepted
27 Apr 2010
First published
24 May 2010

Soft Matter, 2010,6, 2908-2917

The force network ensemble for granular packings

B. P. Tighe, J. H. Snoeijer, T. J. H. Vlugt and M. van Hecke, Soft Matter, 2010, 6, 2908 DOI: 10.1039/B926592A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements