Issue 18, 2010

Insights into the role of material surface topography and wettability on cell-material interactions

Abstract

This work investigates the effect of surface topography and biomaterial wettability on protein absorption, cell attachment, proliferation and morphology and reveals important insights in the complexity of cell-material interactions. We use various materials, i.e. poly(dimethyl siloxane) (PDMS), poly(L-lactic acid) (PLLA), a co-polymer of poly(ethylene oxide) and poly(butylene terephtalate) (PEOT/PBT) and tissue culture polystyrene (TCPS) as a reference. These materials are used extensively in biomedical applications and tissue engineering and have differences in hydrophobicity. Patterning of PDMS, PLLA and PEOT/PBT with a micropattern array of pillars with variable pillar spacing and pillar height induces changes in the wettability of their surfaces without changes in their surface chemistry. The cell study is performed using C2C12 pre-myoblasts cells. Our results reveal a clear effect of surface topography, and to a lesser extent of material hydrophobicity, on cell attachment, morphology and proliferation. Generally, surface topography on high hydrophobicity materials improves initial C2C12 cell attachment, whereas less hydrophobic and nonpatterned materials seem to support higher cell proliferation and spreading. With respect to cell morphology, surface topography seems dominant over material wettability; although the transition where cells change from growing on top of the pillars to growing on the underlying surface appears to be determined by the material wettability. These findings are important in the design of biomaterials in various applications including implants, bio-artificial organs and tissue engineering.

Graphical abstract: Insights into the role of material surface topography and wettability on cell-material interactions

Article information

Article type
Paper
Submitted
23 Dec 2009
Accepted
26 May 2010
First published
05 Aug 2010

Soft Matter, 2010,6, 4377-4388

Insights into the role of material surface topography and wettability on cell-material interactions

B. J. Papenburg, E. D. Rodrigues, M. Wessling and D. Stamatialis, Soft Matter, 2010, 6, 4377 DOI: 10.1039/B927207K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements