Issue 3, 2010

Synthesis and electroluminescent property of novel europium complexes with oxadiazole substituted 1,10-phenanthroline and 2,2′-bipyridine ligands

Abstract

Several 1,10-phenanthroline derivatives (PhoR), 2,2′-bipyridine derivatives (BpoR) and related europium complexes Eu(TTA)3PhoR and Eu(TTA)3BpoR were synthesized (HTTA = 2-thenoyltrifluoroacetone). Single crystal X-ray diffraction of Eu(TTA)3Php (Php = 2-(pyridyl)-1,10-phenanthroline) shows that Php acts as a tridentate NNN ligand, leading to a high stability of the complex for vacuum evaporation. When an oxadiazole moiety is incorporated into the ligand, the corresponding europium complexes show improved carrier-transporting abilities as well as thermal stabilities under vapor deposition for electroluminescence (EL) applications. Experiments revealed that these complexes have high photoluminescence (PL) quantum yields due to suitable triplet energy levels (ET) of the ligands, between 19 724 and 22 472 cm−1, for the sensitization of Eu(III) (5D0: 17 500 cm−1). Utilizing Eu(TTA)3PhoB (PhoB = 2-(5-phenyl-1,3,4-oxadiazol-2-yl)-1,10-phenanthroline) as the dopant emitter in CBP (4,4′-N,N′-dicarbazolebiphenyl), EL devices with a structure of TPD (4,4′-bis[N-(p-tolyl)-N-phenylamino] biphenyl, 30 nm)/Eu(TTA)3PhoB:CBP (7.5%, 20nm)/BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 20 nm)/Alq3 (tris(8-hydroxyquinoline), 30 nm) exhibited a pure emission from europium ions. The highest efficiency obtained was 5.5 lm W−1, 8.7 cd A−1 and the maximum brightness achieved was 1086 cd m−2. At a practical brightness of 100 cd m−2, the efficiency remains above 2.0 cd A−1.

Graphical abstract: Synthesis and electroluminescent property of novel europium complexes with oxadiazole substituted 1,10-phenanthroline and 2,2′-bipyridine ligands

Supplementary files

Article information

Article type
Paper
Submitted
07 Sep 2009
Accepted
10 Nov 2009
First published
13 Jan 2010

New J. Chem., 2010,34, 487-494

Synthesis and electroluminescent property of novel europium complexes with oxadiazole substituted 1,10-phenanthroline and 2,2′-bipyridine ligands

Z. Chen, F. Ding, F. Hao, M. Guan, Z. Bian, B. Ding and C. Huang, New J. Chem., 2010, 34, 487 DOI: 10.1039/B9NJ00461K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements