Issue 4, 2010

Dendritic magnetite nanocarriers for drug delivery applications

Abstract

A novel arginine-based dendritic block is grown on the surface of APTS-coated Fe3O4 nanoparticles by conventional growth approach of Michael addition/amidation reactions. The thus-obtained dendritic magnetite nanocarriers (DMNCs) were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), atomic force microscopy (AFM), vibrating sample magnetometry(VSM), dynamic light scattering (DLS) and thermogravimetric (TGA) analysis. The functionalization of MNPs with the dendritic block was evident from FTIR and TGA analyses. The nanocarriers had an average size of 10 nm and exhibited superparamagnetism with high magnetization values at room temperature. The aqueous colloidal suspension of DMNCs (10 mg ml−1 of Fe) showed a temperature rise up to 43 °C in 5 min and yielded a moderate specific absorption rate (SAR) value of 30 W g−1 of magnetite under the influence of AC magnetic field of 10 kA m−1 and 425 kHz frequency. Biocompatibility of the developed nanocarriers was evaluated in vitro by assessing their cytotoxicity on human cervical cancer cells (HeLA cells) using a sulforhodamine B (SRB) assay. Encapsulation and release of the anticancer drug doxorubicin (DOX) was investigated. The change in surface charge, as evident from zeta potential analyzer and quenching of fluorescence intensity, strongly suggests the interaction of DOX with the DMNCs. The nanocarriers showed good capacity to encapsulate DOX, with loading as high as 65% (w/w) and a pH-responsive sustained release of 54% at pH 5.0. Also, the release of DOX from the nanocarriers increased up to 80% on application of an AC magnetic field.

Graphical abstract: Dendritic magnetite nanocarriers for drug delivery applications

Article information

Article type
Paper
Submitted
28 Oct 2009
Accepted
19 Dec 2009
First published
12 Feb 2010

New J. Chem., 2010,34, 648-655

Dendritic magnetite nanocarriers for drug delivery applications

S. Chandra, S. Mehta, S. Nigam and D. Bahadur, New J. Chem., 2010, 34, 648 DOI: 10.1039/B9NJ00609E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements