Issue 5, 2010

Nitroxide-mediated copolymerization of methacrylic acid with sodium 4-styrene sulfonate: towards new water-soluble macroalkoxyamines for the synthesis of amphiphilic block copolymers and nanoparticles

Abstract

The SG1-mediated copolymerization of methacrylic acid (MAA) and 4-styrene sulfonate (SS) was studied in dimethylsulfoxide solution at 76 °C, first, to determine the reactivity ratios in such conditions and second, to check the living character of the reaction at low molar fraction of SS. The reactivity ratios in the terminal model were rMAA = 0.44 and rSS = 1.34 indicating a favored incorporation of SS at the beginning of the copolymerization. All characteristics of a controlled/living system were observed, in good agreement with an efficient deactivation of the propagating radicals by the nitroxide SG1, via probable formation of an SS terminal subunit-based alkoxyamine. The method was shown to be particularly well-suited for the design of living polymers intended to be used as hydrophilic macroinitiators for the synthesis of amphiphilic block copolymers. This was demonstrated in both solution polymerization and ab initio, batch emulsion polymerization. The latter process allowed well-defined block copolymer nanoparticles to be formed at low temperature, in a single step, by simultaneous chain growth and self-assembling.

Graphical abstract: Nitroxide-mediated copolymerization of methacrylic acid with sodium 4-styrene sulfonate: towards new water-soluble macroalkoxyamines for the synthesis of amphiphilic block copolymers and nanoparticles

Article information

Article type
Paper
Submitted
10 Dec 2009
Accepted
05 Feb 2010
First published
04 Mar 2010

Polym. Chem., 2010,1, 720-729

Nitroxide-mediated copolymerization of methacrylic acid with sodium 4-styrene sulfonate: towards new water-soluble macroalkoxyamines for the synthesis of amphiphilic block copolymers and nanoparticles

S. Brusseau, J. Belleney, S. Magnet, L. Couvreur and B. Charleux, Polym. Chem., 2010, 1, 720 DOI: 10.1039/B9PY00371A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements