Issue 24, 2010

Adsorption of light hydrocarbons in the flexible MIL-53(Cr) and rigid MIL-47(V) metal–organic frameworks: a combination of molecular simulations and microcalorimetry/gravimetry measurements

Abstract

The adsorption of short linear alkanes has been explored in the highly flexible MIL-53(Cr) porous metal–organic framework by means of molecular simulations based on configurational bias grand canonical Monte Carlo. The unusual shape of the adsorption isotherms with the existence of steps has been successfully modelled by creating a (narrow pore, large pore) phase mixture domain, the composition of which varies with pressure. A further step consisted of combining our computational approach with several experimental tools including microcalorimetry, gravimetry and in situ X-ray diffraction, to fully characterize the adsorption behaviour of the isostructural MIL-47(V) rigid MOF, i.e. the preferential arrangement of each type of alkane inside the pores and the resulting interaction energy. Finally, relationships are established between the adsorption enthalpies and both alkyl chain length and polarisability of the alkanes that can be further utilised to predict the energetics of the adsorption process for longer alkane chains.

Graphical abstract: Adsorption of light hydrocarbons in the flexible MIL-53(Cr) and rigid MIL-47(V) metal–organic frameworks: a combination of molecular simulations and microcalorimetry/gravimetry measurements

Article information

Article type
Paper
Submitted
18 Jan 2010
Accepted
21 Apr 2010
First published
07 May 2010

Phys. Chem. Chem. Phys., 2010,12, 6428-6437

Adsorption of light hydrocarbons in the flexible MIL-53(Cr) and rigid MIL-47(V) metal–organic frameworks: a combination of molecular simulations and microcalorimetry/gravimetry measurements

N. Rosenbach Jr, A. Ghoufi, I. Déroche, P. L. Llewellyn, T. Devic, S. Bourrelly, C. Serre, G. Férey and G. Maurin, Phys. Chem. Chem. Phys., 2010, 12, 6428 DOI: 10.1039/C001173H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements