Issue 9, 2010

Quantitative proteomics reveals direct and indirect alterations in the histone code following methyltransferase knockdown

Abstract

Histones are highly conserved proteins that organize cellular DNA. These proteins, especially their N-terminal domains, are adorned with many post-translational modifications (PTMs) such as lysine methylation, which are associated with active or repressed transcriptional states. The lysine methyltransferase G9a and its interaction partner Glp1 can mono- or dimethylate histone H3 on lysine (H3K9me1 or me2); possible cross-talk between these modifications and other PTMs on the same or other histone molecules is currently uncharacterized. In this study, we comprehensively analyze the effects of G9a/Glp1 knockdown on the most abundant histone modifications through both Bottom Up and Middle Down mass spectrometry-based proteomics. In addition to the expected decrease in H3K9me1/me2 we find that other degrees of methylation on K9 are affected by the reduction of G9a/Glp1 activity, particularly when K9 methylation occurs in combination with K14 acetylation. In line with this, an increase in K14 acetylation upon G9a knockdown was observed across all H3 variants (H3.1, H3.2 and H3.3), hinting at the potential existence of a binary switch between K9 methylation and K14 acetylation. Interestingly, we also detect changes in the abundance of other modifications (such as H3K79me2) in response to lowered levels of G9a/Glp1 suggesting histone PTM cross-talk amongst the H3 variants. In contrast, we find that G9a/Glp1 knockdown produces little effect on the levels of histone H4 PTMs, indicating low to no trans-histone PTM crosstalk. Lastly, we determined gene expression profiles of control and G9a/Glp1 knockdown cells, and we find that the G9a/Glp1 knockdown influences several genes, including DNA binding proteins and key factors in chromatin. Our results provide new insights into the intra- and inter- histone cross-regulation of histone K9 methylation and its potential downstream gene targets.

Graphical abstract: Quantitative proteomics reveals direct and indirect alterations in the histone code following methyltransferase knockdown

Supplementary files

Article information

Article type
Paper
Submitted
17 Feb 2010
Accepted
09 Jun 2010
First published
24 Jun 2010

Mol. BioSyst., 2010,6, 1719-1729

Quantitative proteomics reveals direct and indirect alterations in the histone code following methyltransferase knockdown

M. D. Plazas-Mayorca, J. S. Bloom, U. Zeissler, G. Leroy, N. L. Young, P. A. DiMaggio, L. Krugylak, R. Schneider and B. A. Garcia, Mol. BioSyst., 2010, 6, 1719 DOI: 10.1039/C003307C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements