Issue 33, 2010

Onset of diradical character in small nanosized graphene patches

Abstract

A family of small graphene patches, i.e., rectangular polyaromatic hydrocarbons (PAHs), that have both zigzag and armchair edges is investigated to establish their ground state electronic structure. Broken symmetry density functional theory (DFT) and plane wave DFT were used to characterize the onset of diradical character via relative energies of open-shell and closed-shell singlet states. The perfect pairing (PP) active space approximation of coupled cluster theory was used to characterize diradical character on the basis of promotion of electrons from occupied to unoccupied molecular orbitals. The role of zigzag and armchair edges in the formation of open-shell singlet states is elucidated. In particular, it is found that elongation of the zigzag edge results in an increase of diradical character whereas elongation of the arm chair edge leads to a decrease of diradical character. Analysis of orbitals from PP calculations suggests that diradical states are formally Mobius aromatic multiconfigurational systems.

Graphical abstract: Onset of diradical character in small nanosized graphene patches

Supplementary files

Article information

Article type
Paper
Submitted
01 Mar 2010
Accepted
18 May 2010
First published
08 Jun 2010

Phys. Chem. Chem. Phys., 2010,12, 9839-9844

Onset of diradical character in small nanosized graphene patches

J. Wang, D. Yu. Zubarev, M. R. Philpott, S. Vukovic, W. A. Lester, T. Cui and Y. Kawazoe, Phys. Chem. Chem. Phys., 2010, 12, 9839 DOI: 10.1039/C003708G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements