Issue 41, 2010

Charge transport and diffusion of ionic liquids in nanoporous silicamembranes

Abstract

Charge transport in 1-hexyl-3-methylimidazolium hexafluorophosphate ionic liquid in oxidized nanoporous silicon membranes is investigated in a wide frequency and temperature range by a combination of Broadband Dielectric Spectroscopy (BDS) and Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR). By applying the Einstein–Smoluchowski relations to the dielectric spectra, diffusion coefficient is obtained in quantitative agreement with independent PFG NMR measurements. More than 10-fold systematic decrease in the effective diffusion coefficient from the bulk value is observed in hydrophilic silica nanopores. A model assuming a reduced mobility at the pore–matrix interface is shown to provide a quantitative explanation for the remarkable decrease of effective transport quantities (such as diffusion coefficient, dc conductivity and consequently, the dielectric loss) of the ionic liquid in non-silanized membranes. This approach is supported by the observation that silanization of porous silica membranes results in a significant increase of the effective diffusion coefficient, which approaches the value for the bulk liquid.

Graphical abstract: Charge transport and diffusion of ionic liquids in nanoporous silica membranes

Article information

Article type
Paper
Submitted
22 Mar 2010
Accepted
11 Aug 2010
First published
08 Sep 2010

Phys. Chem. Chem. Phys., 2010,12, 13798-13803

Charge transport and diffusion of ionic liquids in nanoporous silica membranes

C. Iacob, J. R. Sangoro, P. Papadopoulos, T. Schubert, S. Naumov, R. Valiullin, J. Kärger and F. Kremer, Phys. Chem. Chem. Phys., 2010, 12, 13798 DOI: 10.1039/C004546B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements