Issue 10, 2010

Glucose response of dissolved-core alginate microspheres: towards a continuous glucose biosensor

Abstract

Microparticle optical sensors hold potential as implantable smart materials for in vivo analysis. In this work, the reversible response of dissolved-core alginate microspheres containing a homogeneous fluorescence resonance energy transfer (FRET)-based competitive binding assay for glucose was evaluated. The layer-by-layer self assembly technique was used to deposit multilayered nanofilm coatings on the alginate microspheres containing the assay, thereby stabilizing the sensor system when the alginate was de-crosslinked. The response to glucose was then determined in DI water and simulated interstitial fluid (SIF) using a flow cell to establish controlled, dynamic flow conditions for demonstrating reversibility. The glucose sensitivity under dynamic conditions was estimated to be 0.52%/mM glucose in DI water and 0.6%/mM glucose in simulated interstitial fluid; in both cases, the analytical response range was 0–30mM glucose, covering both physiological (normoglycemia) and pathophysiological range (hyperglycemia and hypoglycemia). The sensor demonstrated a repeatable and reproducible response when tested over a period of one month, under dynamic flow conditions. Finally, in vitro cytotoxicity assays performed with L929 mouse fibroblast cell lines suggested that the dissolved-core alginate microsphere sensor system with nanofilm coating has sufficient biocompatibility for use as implantable glucose biosensors.

Graphical abstract: Glucose response of dissolved-core alginate microspheres: towards a continuous glucose biosensor

Article information

Article type
Paper
Submitted
23 Feb 2010
Accepted
21 Jun 2010
First published
06 Aug 2010

Analyst, 2010,135, 2620-2628

Glucose response of dissolved-core alginate microspheres: towards a continuous glucose biosensor

A. Chaudhary, M. J. McShane and R. Srivastava, Analyst, 2010, 135, 2620 DOI: 10.1039/C0AN00109K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements