Issue 8, 2011

Five three/two-fold interpenetrating architectures from self-assembly of fluorene-2,7-dicarboxylic acid derivatives and d10 metals

Abstract

Five new three/two-fold interpenetrated coordination polymers, namely, [Cd(mfda)(L1)] (1), [Cd(efda)(L1)] (2), [Zn2(mfda)2(L2)]·DMF·H2O (3), [Zn2(efda)2(L2)]·(DMF)0.25, (4) and [Cd2(mfda)2(L2)2]·DMF·H2O (5) (H2mfda = 9,9-dimethylfluorene-2,7-dicarboxylic acid, H2efda = 9,9-diethylfluorene-2,7-dicarboxylic acid, L1 = Methylene bis(3,5-dimethylpyrazole) and L2 = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene), have been synthesized under solvent-thermal conditions with mixed ligands. Compounds 1 and 2 are isostructural and possess two-dimensional (6, 3) layered structures containing two kinds of rings. Three equivalent (6, 3) net interpenetrate in a parallel fashion to form an unprecedented mat-like 2D sheet. Compounds 3 and 4 are almost identical in structure and display threefold interpenetrating α–Po net structures. Compound 5 displays a twofold interpenetrated 3D 6-connected net with α–Po topology. The luminescent properties of these compounds have been studied in the solid state at room temperature.

Graphical abstract: Five three/two-fold interpenetrating architectures from self-assembly of fluorene-2,7-dicarboxylic acid derivatives and d10 metals

Supplementary files

Article information

Article type
Paper
Submitted
21 Sep 2010
Accepted
31 Jan 2011
First published
25 Feb 2011

CrystEngComm, 2011,13, 2935-2941

Five three/two-fold interpenetrating architectures from self-assembly of fluorene-2,7-dicarboxylic acid derivatives and d10 metals

S. Su, C. Qin, Z. Guo, H. Guo, S. Song, R. Deng, F. Cao, S. Wang, G. Li and H. Zhang, CrystEngComm, 2011, 13, 2935 DOI: 10.1039/C0CE00662A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements