Issue 39, 2010

Influence of phosphate anion adsorption on the kinetics of oxygen electroreduction on low index Pt(hkl) single crystals

Abstract

The detrimental effects of phosphate anion adsorption on the oxygen reduction reactions (ORR) on low index Pt single crystal electrodes were studied in 0.1 M perchloric acid by using a hanging meniscus rotating disk electrode in the presence of varied concentrations of H3PO4. The kinetic current for ORR decreased dramatically on Pt(100), Pt(110), Pt(111), and PtSn(111) even with the addition of a small amount (1 mM) of H3PO4 into the perchloric acid solution, most probably due to the adsorption of phosphate anions onto the Pt active sites that impeded the electroreduction of O2. Remarkably, the extent of decline was found to vary with the specific single crystal surface, following the order of Pt(111) > PtSn(111) > Pt(110)Pt(100). Consistent behaviors were also observed in Tafel analysis and in electrochemical impedance spectroscopic measurements. Within the present experimental context, Pt(110) was found to be the optimal crystal surface for ORR in phosphoric acid fuel cells with the smallest charge transfer resistance, whereas the poisoning effects of phosphate anion adsorption were the most pronounced on Pt(111), most likely because the phosphate anions primarily adsorbed on the 3-fold sites on the Pt(111) faces, as manifested in in situ X-ray absorption spectroscopic measurements.

Graphical abstract: Influence of phosphate anion adsorption on the kinetics of oxygen electroreduction on low index Pt(hkl) single crystals

Supplementary files

Article information

Article type
Paper
Submitted
03 May 2010
Accepted
15 Jul 2010
First published
20 Aug 2010

Phys. Chem. Chem. Phys., 2010,12, 12544-12555

Influence of phosphate anion adsorption on the kinetics of oxygen electroreduction on low index Pt(hkl) single crystals

Q. He, X. Yang, W. Chen, S. Mukerjee, B. Koel and S. Chen, Phys. Chem. Chem. Phys., 2010, 12, 12544 DOI: 10.1039/C0CP00433B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements