Issue 17, 2011

A new force field model for the simulation of transport properties of imidazolium-based ionic liquids

Abstract

A new, non-polarizable force field model (FFM) for imidazolium-based, room-temperature ionic liquids (RTILs), 1-ethyl-3-methyl-imidazolium tetrafluoroborate and 1-butyl-3-methyl-imidazolium tetrafluoroborate, has been developed. Modifying the FFM originally designed by Liu et al. (J. Phys. Chem. B, 2004, 108, 12978–12989), the electrostatic charges on interacting sites are refined according to partial charges calculated by explicit-ion density functional theory. The refined FFM reproduces experimental heats of vaporization, diffusion coefficients, ionic conductivities, and shear viscosities of RTILs, which is a significant improvement over the original model (Zh. Liu, Sh. Huang and W. Wang, J. Phys. Chem. B, 2004, 108, 12978–12989). The advantages of the proposed procedure include clarity, simplicity, and flexibility. Expanding the functionality of our FFM conveniently only requires modification of the electrostatic charges. Our FFM can be extended to other classes of RTILs as well as condensed matter systems in which the ionic interaction requires an account of polarization effects.

Graphical abstract: A new force field model for the simulation of transport properties of imidazolium-based ionic liquids

Article information

Article type
Paper
Submitted
04 Dec 2010
Accepted
03 Mar 2011
First published
28 Mar 2011

Phys. Chem. Chem. Phys., 2011,13, 7910-7920

A new force field model for the simulation of transport properties of imidazolium-based ionic liquids

V. V. Chaban, I. V. Voroshylova and O. N. Kalugin, Phys. Chem. Chem. Phys., 2011, 13, 7910 DOI: 10.1039/C0CP02778B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements