Issue 12, 2010

In situ study on molecular diffusion phenomena in nanoporous catalytic solids

Abstract

As an omnipresent phenomenon in nature, diffusion is among the rate-determining processes in many technological processes. This is in particular true for catalytic conversion in nanoporous materials. We provide a critical review of the possibilities of exploring diffusion phenomena over microscopic dimensions in such media by direct experimental observation. By monitoring the probability distribution of molecular displacements as a function of time, the pulsed field gradient technique of NMR (PFG NMR) records the rate of molecular re-distribution. By varying the observation time, PFG NMR is thus able to trace even hierarchies of transport resistances as occurring, e.g., in catalyst particles in the form of binder-compacted assemblages of zeolite crystallites. Alternatively, and complementary to this information, interference microscopy (IFM) and IR microscopy (IRM) are able to follow the evolution of intracrystalline concentration profiles during uptake and release. This allows, in particular, an accurate quantification of the transport resistances on the surface of the individual crystallites and of the probability that reactant molecules from the gas phase, upon colliding with the external surface, are able to penetrate through such “surface barriers” into the crystal bulk phase. Being able to distinguish between different molecular species, IRM is able to record the evolution of intracrystalline concentration profiles even during multi-component adsorption and catalytic reactions (169 references).

Graphical abstract: In situ study on molecular diffusion phenomena in nanoporous catalytic solids

Article information

Article type
Critical Review
Submitted
03 Sep 2010
First published
25 Oct 2010

Chem. Soc. Rev., 2010,39, 4864-4884

In situ study on molecular diffusion phenomena in nanoporous catalytic solids

C. Chmelik and J. Kärger, Chem. Soc. Rev., 2010, 39, 4864 DOI: 10.1039/C0CS00100G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements