Issue 48, 2010

Structural, MALDI-TOF-MS, Magnetic and Spectroscopic Studies of New Dinuclear Copper(ii), Cobalt(ii) and Zinc(ii) Complexes Containing a Biomimicking μ-OH bridge

Abstract

The Py2N4S2 octadentate coordinating ligand afforded dinuclear cobalt, copper and zinc complexes and the corresponding mixed metal compounds. The overall geometry and bonding modes have been deduced on the basis of elemental analysis data, MALDI-TOF-MS, IR, UV-vis and EPR spectroscopies, single-crystal X-Ray diffraction, conductivity and magnetic susceptibility measurements. In the copper and zinc complexes, a μ-hydroxo bridge links the two metal ions. In both cases, the coordination geometry is distorted octahedral. Magnetic and EPR data reveal weakly antiferromagnetic high spin Co(II) ions, compatible with a dinuclear structure. The magnetic characterization of the dinuclear Cu(II) compound indicates a ferromagnetically coupled dimer with weak antiferromagnetic intermolecular interactions. The intra-dimer ferromagnetic behaviour was unexpected for a Cu(II) dimer with such μ-hydroxo bridging topology. We discuss the influence on the magnetic properties of non-covalent interactions between the bridging moiety and the lattice free water molecules.

Graphical abstract: Structural, MALDI-TOF-MS, Magnetic and Spectroscopic Studies of New Dinuclear Copper(ii), Cobalt(ii) and Zinc(ii) Complexes Containing a Biomimicking μ-OH bridge

Supplementary files

Article information

Article type
Paper
Submitted
21 Jun 2010
Accepted
17 Sep 2010
First published
04 Nov 2010

Dalton Trans., 2010,39, 11654-11663

Structural, MALDI-TOF-MS, Magnetic and Spectroscopic Studies of New Dinuclear Copper(II), Cobalt(II) and Zinc(II) Complexes Containing a Biomimicking μ-OH bridge

C. Núñez, R. Bastida, A. Macías, L. Valencia, N. I. Neuman, A. C. Rizzi, C. D. Brondino, P. J. González, J. L. Capelo and C. Lodeiro, Dalton Trans., 2010, 39, 11654 DOI: 10.1039/C0DT00692K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements