Issue 3, 2011

Light-harvesting multi-walled carbon nanotubes and CdS hybrids: Application to photocatalytic hydrogen production from water

Abstract

This study reports the synthesis and surface characterization of multi-walled carbon nanotubes (CNT), CdS, and metal catalyst (M) hybrids (CdS/CNT/M), and their novel application to photocatalytic hydrogen production under visible light (λ > 400 nm) in the presence of electron donor (Na2S and Na2SO3). In the binary hybrids between CNT and CdS (CdS/CNT) the CNT annealed at 500 °C (h-CNT) has the larger amount of hydrogen production than crude (c-CNT) or acid-treated CNT (a-CNT) due to highly improved purity and suitable work function. When hybridized with CdS and M, however, a-CNT has the largest amount of hydrogen production (a-CNT > h-CNT > c-CNT) even though all the CNTs have similar functional groups for binding metal catalyst on their surfaces. Photocurrent measurements also indicated that CdS/a-CNT/Pt ternary generates a higher photocurrent than that of CdS/a-CNT binary (ternary > binary > CdS alone). In such ternary hybrids, Pt, Ni, and Ru are found to be effective in catalyzing proton/water but other metals (Pd, Au, Ag, Cu) showed very low activities with the following order: Pt > Ni > Ru > Pd > Au > Ag > Cu. The enhanced hydrogen production in the binary and ternary hybrids is ascribed partially to suitably positioned work functions among the hybrid components and thereby vectorial charge transfer through the work function energy gradient. Detailed surface studies were also described using Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

Graphical abstract: Light-harvesting multi-walled carbon nanotubes and CdS hybrids: Application to photocatalytic hydrogen production from water

Supplementary files

Article information

Article type
Paper
Submitted
01 Aug 2010
Accepted
07 Sep 2010
First published
08 Oct 2010

Energy Environ. Sci., 2011,4, 685-694

Light-harvesting multi-walled carbon nanotubes and CdS hybrids: Application to photocatalytic hydrogen production from water

Y. K. Kim and H. Park, Energy Environ. Sci., 2011, 4, 685 DOI: 10.1039/C0EE00330A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements