Issue 23, 2010

In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites

Abstract

Carbon nanofibers (CNFs) suspended epoxy resin nanocomposites and the corresponding polymer nanocomposites are fabricated. The surface of CNFs is introduced a functional amine terminated groups via silanization, which in situ react with epoxy monomers. This in situ reaction favors the CNFs dispersion and improves the interfacial interaction between CNFs and monomers. Effects of particle loading, surface treatment and operating temperatures of rheological tests on the complex viscosity, storage modulus and loss modulus are systematically studied. Unique rheological phenomena “a decreased viscosity with a better dispersion” are observed and explained in terms of the improved filler dispersion quality. Meanwhile, significant increase in the tensile property and storage modulus is observed and related to the better dispersion and the introduced strong interfacial interaction as revealed by SEM imaging. Finally, electrical conductivity is investigated and an unusual deficiency of surface treatment to improve the electrical conductivity is explained by an insulating coating layer.

Graphical abstract: In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites

Supplementary files

Article information

Article type
Paper
Submitted
18 Jan 2010
Accepted
18 Mar 2010
First published
10 May 2010

J. Mater. Chem., 2010,20, 4937-4948

In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites

J. Zhu, S. Wei, J. Ryu, M. Budhathoki, G. Liang and Z. Guo, J. Mater. Chem., 2010, 20, 4937 DOI: 10.1039/C0JM00063A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements