Issue 46, 2010

Dramatic reduction of the oxygen vacancy formation energy in ceria particles: a possible key to their remarkable reactivity at the nanoscale

Abstract

We address the formation of the energetically most favourable single oxygen vacancies in ceria nanoparticles (CeO2)n focusing on their size dependence. We study a series of structures with increasing number of CeO2 units (n = 21, 30, 40 and 80) that, according to well tested interatomic-potential calculations, approach the global minima for these particle sizes. The structures thus obtained are refined by means of density functional (DF) methods, modified by the on-site Coulomb correction. Subsequent DF calculations are performed to quantify and analyse the depletion of atomic O from the nanoparticles that results in the formation of a vacancy Ovac. We show that (i) removal of a low- (two-)coordinate O atom from ceria species requires the lowest energy, in line with evidence from other metal oxides; (ii) the depletion of such O atoms from the nanoparticles is strongly facilitated compared to extended (even irregular) surfaces; (iii) increase of the particle size is accompanied by a dramatic decrease of the Ovac formation energy, implying that at certain sizes this energy should reach a minimum; (iv) the size dependence of the Ovac formation energy is driven by the electrostatics, thus enabling the prediction of the most easily removable O atoms by analysing the distribution of the electrostatic potential in the pristine stoichiometric (vacancy-free) ceria systems. Our findings provide a key to rationalize the observed spectacularly enhanced reactivity of ceria nanostructures.

Graphical abstract: Dramatic reduction of the oxygen vacancy formation energy in ceria particles: a possible key to their remarkable reactivity at the nanoscale

Supplementary files

Article information

Article type
Paper
Submitted
15 Jun 2010
Accepted
13 Sep 2010
First published
18 Oct 2010

J. Mater. Chem., 2010,20, 10535-10546

Dramatic reduction of the oxygen vacancy formation energy in ceria particles: a possible key to their remarkable reactivity at the nanoscale

A. Migani, G. N. Vayssilov, S. T. Bromley, F. Illas and K. M. Neyman, J. Mater. Chem., 2010, 20, 10535 DOI: 10.1039/C0JM01908A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements