Issue 4, 2011

Colorful detection of organic solvents based on responsive organic/inorganic hybrid one-dimensional photonic crystals

Abstract

Solvent sensitive organic/inorganic hybrid one-dimensional photonic crystals (1DPCs) were prepared through alternating thin films of poly methyl methacrylate-co-hydroxyethyl methacrylate-co-ethylene glycol dimethacrylate (PMMA-co-PHEMA-co-PEGDMA) and titania nanoparticle sol by spin-coating. Since the titania layer has a higher refractive index compared with the polymer layer, an obvious photonic stop band (PSB) can be easily obtained in several layers. Meanwhile, the materials take on evident color as the PSB falls into the visible region. The PSB can be reversibly tuned by introducing or removing organic solvents. Due to different interactions between the polymer and solvent molecules, the PSB can be shifted to different positions when introducing different solvents. At the same time, the 1DPCs present different colors, and the solvents used can be differentiated by the naked eye through color change. The solvent responsive process is very quick and the solvent sensitivity is very high. Almost all common solvents can be distinguished in this way. As well as pure solvents, mixtures can also be detected through the changes of optical properties. The shift of the PSB and the response speed can be modulated by changing the thickness of the polymer layer, while the thickness of the titania layer has little influence on them.

Graphical abstract: Colorful detection of organic solvents based on responsive organic/inorganic hybrid one-dimensional photonic crystals

Article information

Article type
Paper
Submitted
13 Aug 2010
Accepted
11 Oct 2010
First published
26 Nov 2010

J. Mater. Chem., 2011,21, 1264-1270

Colorful detection of organic solvents based on responsive organic/inorganic hybrid one-dimensional photonic crystals

Z. Wang, J. Zhang, J. Li, J. Xie, Y. Li, S. Liang, Z. Tian, C. Li, Z. Wang, T. Wang, H. Zhang and B. Yang, J. Mater. Chem., 2011, 21, 1264 DOI: 10.1039/C0JM02655G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements