Issue 13, 2011

An enhanced CdS/TiO2 photocatalyst with high stability and activity: Effect of mesoporous substrate and bifunctional linking molecule

Abstract

To accomplish the more effective coupling of cadmium sulfide quantum dots (CdS QDs), the mesoporous TiO2 substrate and bifunctional linker, mercaptopropionic acid (MPA), were used to disperse and stabilize the CdS QDs. Due to the porous nano-architecture on the TiO2 substrate with large surface area and high crystallinity, the efficiency of degradation of organic compounds in aqueous solution under visible light irradiation is greatly enhanced, compared to CdS loaded anatase TiO2 without porous structure and common commercial P25. Furthermore, the bifunctional linking molecule, MPA, could effectively disperse and stabilize CdS nanoparticles. CdS/TiO2 with the linking molecule CdS-MPA-TiO2(m) exhibits much more stability and activity than CdS-TiO2(m) which is prepared by direct deposition. After 3 cycling tests of degradation of MB (methylene blue), the loss ratio of CdS on CdS-TiO2(m) is 70.6%, much larger than that of 17.8% on CdS-MPA-TiO2(m). This work may give ideas for the synthesis of other stable and active supported catalysts in many fields.

Graphical abstract: An enhanced CdS/TiO2 photocatalyst with high stability and activity: Effect of mesoporous substrate and bifunctional linking molecule

Supplementary files

Article information

Article type
Paper
Submitted
17 Oct 2010
Accepted
22 Dec 2010
First published
11 Feb 2011

J. Mater. Chem., 2011,21, 4945-4952

An enhanced CdS/TiO2 photocatalyst with high stability and activity: Effect of mesoporous substrate and bifunctional linking molecule

S. Qian, C. Wang, W. Liu, Y. Zhu, W. Yao and X. Lu, J. Mater. Chem., 2011, 21, 4945 DOI: 10.1039/C0JM03508D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements