Issue 30, 2011

Synthesis–structure–performance correlation for polyaniline–Me–C non-precious metal cathode catalysts for oxygenreduction in fuelcells

Abstract

In this report, we present the systematic preparation of active and durable non-precious metal catalysts (NPMCs) for the oxygen reduction reaction in polymer electrolyte fuel cells (PEFCs) based on the heat treatment of polyaniline/metal/carbon precursors. Variation of the synthesis steps, heat-treatment temperature, metal loading, and the metal type in the synthesis leads to markedly different catalyst activity, speciation, and morphology. Microscopy studies demonstrate notable differences in the carbon structure as a function of these variables. Balancing the need to increase the catalyst’s degree of graphitization through heat treatment versus the excessive loss of surface area that occurs at higher temperatures is a key to preparing an active catalyst. XPS and XAFS spectra are consistent with the presence of Me–Nx structures in both the Co and Fe versions of the catalyst, which are often proposed to be active sites. The average speciation and coordination environment of nitrogen and metal, however, depends greatly on the choice of Co or Fe. Taken together, the data indicate that better control of the metal-catalyzed transformations of the polymer into new graphitized carbon forms in the heat-treatment step will allow for even further improvement of this class of catalysts.

Graphical abstract: Synthesis–structure–performance correlation for polyaniline–Me–C non-precious metal cathode catalysts for oxygen reduction in fuel cells

Article information

Article type
Paper
Submitted
23 Oct 2010
Accepted
20 Dec 2010
First published
28 Jun 2011

J. Mater. Chem., 2011,21, 11392-11405

Synthesis–structure–performance correlation for polyaniline–Me–C non-precious metal cathode catalysts for oxygen reduction in fuel cells

G. Wu, C. M. Johnston, N. H. Mack, K. Artyushkova, M. Ferrandon, M. Nelson, J. S. Lezama-Pacheco, S. D. Conradson, K. L. More, D. J. Myers and P. Zelenay, J. Mater. Chem., 2011, 21, 11392 DOI: 10.1039/C0JM03613G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements