Issue 31, 2011

Aqueous room-temperature synthesis of Au–Rh, Au–Pt, Pt–Rh, and Pd–Rh alloy nanoparticles: fully tunable compositions within the miscibility gaps

Abstract

Many binary late transition metal systems have large bulk miscibility gaps, and a variety of synthetic strategies have been developed to generate these non-equilibrium alloys as nanoparticles. While many of these methods strive to co-nucleate both elements by exploiting fast reduction kinetics or co-sequestration within a confined space, we show here that simple room-temperature borohydride co-reduction of appropriate aqueous metal salt solutions yields alloy nanoparticles in the bulk-immiscible Au–Rh, Au–Pt, Pt–Rh, and Pd–Rh systems. The compositions can be tuned across the entire Au1−xRhx, Au1−xPtx, Pt1−xRhx, and Pd1−xRhx solid solutions by varying the ratio of metal salt reagents, and they form in the presence of a variety of molecular and polymeric surface stabilizers. Reaction pathway studies on the model Au–Rh system suggest that the alloy nanoparticles form via a “conversion chemistry” mechanism: Au nanoparticle templates nucleate first, followed by diffusion of Rh to form homogeneous Au–Rh alloy nanoparticles. The alloy nanoparticles tend to be agglomerated, but this can be minimized by forming the nanoparticles directly on catalytically relevant high surface area carbon and biological supports, e.g. Vulcan carbon and wild-type M13 bacteriophage.

Graphical abstract: Aqueous room-temperature synthesis of Au–Rh, Au–Pt, Pt–Rh, and Pd–Rh alloy nanoparticles: fully tunable compositions within the miscibility gaps

Supplementary files

Article information

Article type
Paper
Submitted
13 Nov 2010
Accepted
02 Feb 2011
First published
24 Feb 2011

J. Mater. Chem., 2011,21, 11599-11604

Aqueous room-temperature synthesis of Au–Rh, Au–Pt, Pt–Rh, and Pd–Rh alloy nanoparticles: fully tunable compositions within the miscibility gaps

E. R. Essinger-Hileman, D. DeCicco, J. F. Bondi and R. E. Schaak, J. Mater. Chem., 2011, 21, 11599 DOI: 10.1039/C0JM03913F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements