Issue 23, 2011

Shear activation of mechanophore-crosslinked polymers

Abstract

A new strategy is employed to impart productive mechanochemical response to crosslinked polymers. Force-sensitive molecules, termed mechanophores, are successfully incorporated as crosslinkers into poly(methyl methacrylate) through a free radical polymerization initiated with benzoyl peroxide and N,N-dimethylaniline. Evidence of a shear activated local chemical reaction (an electrocyclic ring opening) is provided by a color- and fluorescence-generating spiropyran mechanophore. Bulk polymer samples and controls were studied under shear loading. In situ full field fluorescence imaging is used to determine the threshold stress and strain required for activation as a function of shear rate and polymer architecture, both of which have a significant effect on mechanochemical activity in the bulk polymer. Increasing the shear rate leads to an increase in activation stress, similar to bulk polymer yielding. Increasing the length of the primary crosslinker with respect to the spiropyran leads to a decrease in activation stress, while the activation strain becomes more shear rate dependent with longer primary crosslinkers. These findings show that the molecular details of the network architecture can be altered to tune the mechanochemical response.

Graphical abstract: Shear activation of mechanophore-crosslinked polymers

Supplementary files

Article information

Article type
Paper
Submitted
19 Nov 2010
Accepted
24 Jan 2011
First published
17 Feb 2011

J. Mater. Chem., 2011,21, 8381-8388

Shear activation of mechanophore-crosslinked polymers

C. M. Kingsbury, P. A. May, D. A. Davis, S. R. White, J. S. Moore and N. R. Sottos, J. Mater. Chem., 2011, 21, 8381 DOI: 10.1039/C0JM04015K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements