Issue 3, 2011

Microfluidics analysis of red blood cell membrane viscoelasticity

Abstract

In this work, a microfluidic system to investigate the flow behavior of red blood cells in a microcirculation-mimicking network of PDMS microchannels with thickness comparable to cell size is presented. We provide the first quantitative description of cell velocity and shape as a function of the applied pressure drop in such devices. Based on these results, a novel methodology to measure cell membrane viscoelastic properties in converging/diverging flow is developed, and the results are in good agreement with data from the literature. In particular, in the diverging channel the effect of RBC surface viscosity is dominant with respect to shear elasticity. Possible applications include measurements of cell deformability in pathological samples, where reliable methods are still lacking.

Graphical abstract: Microfluidics analysis of red blood cell membrane viscoelasticity

Article information

Article type
Paper
Submitted
27 Aug 2010
Accepted
19 Oct 2010
First published
15 Nov 2010

Lab Chip, 2011,11, 449-454

Microfluidics analysis of red blood cell membrane viscoelasticity

G. Tomaiuolo, M. Barra, V. Preziosi, A. Cassinese, B. Rotoli and S. Guido, Lab Chip, 2011, 11, 449 DOI: 10.1039/C0LC00348D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements